# Long-Term Competitiveness: R&D Policy Issues in a Knowledge-Based Economy

**Gregory Tassey** 

Senior Economist
National Institute of Standards and Technology

tassey@nist.gov

http://www.nist.gov/public\_affairs/budget.htm

# The long run is not a problem— until you get there

# Ratio of NIST Infratechnology Funding to Industry-Funded R&D: 1970-2000

#### Ratio of NIST STRS to Industry-Funded R&D:1970-2000



Source: National Science Foundation; NIST Budget Office

# **R&D Policy**

- All advanced economies have an "R&D policy"
- Implies a belief in "market failures"
- Requires large and varied set of indicators
- Requires consensus conceptual framework
- Protracted policy debates

# Steps in R&D Policy Analysis:

- Importance of technology
- Indicators of underinvestment in R&D?
  - > Low rates of innovation
  - > Low rates of productivity growth
  - Persistent trade balances
- Causes of underinvestment (market failure mechanisms)
  - > Excessive discounting
  - Appropriability problems
  - ➤ Industry or market structure deficiencies
  - Inadequate infrastructure
- Responses (policy instruments that match the identified market failures)

- **Technology** accounts for more than 50 percent of **output** (GDP) growth in all OECD countries (except Canada)
- Technology (through innovation and capital deepening) accounts for 2/3 of **productivity** growth
- Message: R&D is a critical policy variable because it is the process that creates technology

# Major Economic Sector Shares of GDP and Industrial R&D Performance, 2000



Source: Bureau of Economic Analysis; National Science Foundation, *Research and Development in Industry*–2000, Table E-1

**R&D-to-Sales Trends in Manufacturing: 1983-1998** 

Company and Other (except Federal) R&D Funds as % of Net Sales



Source: National Science Foundation, National Patterns of R&D Resources: Early Release Tables, 2000

## High-Tech Sector:

- > Electronics
- Pharmaceuticals
- Communication Services
- Software and Computer-Related Services
- ◆ Accounts for 7 10 percent of GDP
- **Message:** The other 90+ percent of the economy is susceptible to market share erosion and decline

# **Geographic Concentration:**

- Six states account for almost one-half of all R&D
- Ten states account for almost two-thirds of all R&D
- Message: The remaining 40 states are not a high-tech economy

Geographic Distribution of U.S. R&D Performance

|               | % of              | % of         |
|---------------|-------------------|--------------|
| State         | <b>Population</b> | National R&D |
| California    | 12.0              | 20.7         |
| Michigan      | 3.5               | 8.1          |
| New York      | 6.7               | 6.1          |
| Texas         | 7.4               | 5.4          |
| Massachusetts | 2.3               | 5.3          |
| Pennsylvania  | 4.4               | 4.6          |
| New Jersey    | 3.0               | 4.6          |
| Illinois      | 4.4               | 4.2          |
| Washington    | 2.1               | 3.6          |
| Maryland      | 1.9               | 3.5          |
| Total         | 47.7              | 66.1         |

Source: National Science Foundation

#### Bachelor's S&E Degrees in the United States and Asia: 1993-1998



Source: National Science Foundation, S&EI, Appendix Table 2-33. Asian data include China, India, Japan, South Korea, and Taiwan

# How Has the "High-Tech" Economy Performed?

U.S. Trade Balances for High-Tech Products and All Goods 1988-2001 (in \$billions)



# How Has the "High-Tech" Economy Performed?

**Long-Term Trends in Productivity and Income: 1948-2000** 



Source: Bureau of Labor Statistics

# How Has the "High-Tech" Economy Performed?

## Razor's Edge Growth Path:

- TFP growth highly dependent on 12% of the economy producing durable goods, notably computers (Gordon)
- IT products responsible for above trend growth in late 1990s (Oliner and Sichel)
- Sharp reduction in TFP would result if semiconductor industry product life cycle returns to 3 years from recent 2 years (Jorgenson)
- Message: Prospects for above-trend long-term productivity growth are poor

### The "New Economy":

- IT (or ICT) has infrastructure character
- Need products and services from a broader high-tech sector
  - Source: IT systems based on a range of innovative products from the manufacturing sector
  - Synergy: Productivity of manufacturing benefits from IT services
  - ➤ Impact: The manufacturing sector accounts for \$1.5 trillion of GDP and 20 million jobs
- Message: advanced economies need a broad and deep R&D strategy, including a manufacturing focus

Trends in U.S. R&D by Major Phase of R&D, 1991-2000 (\$ billions)



Source: National Science Foundation, National Patterns of R&D Resources: Early Release Tables, 2000

#### Profit Differentials for Major & Incremental Innovations



Source: W. Chan Kim and Renée Mauborgne, "Value Innovation: The Strategic Logic of High Growth", *Harvard Business Review* 75:1(1997)

IRI "Sea Change" Index:
Member Firms' Annual Planned Investments in
Directed Basic Research

|      | Percent Planning            | Percent              | Sea<br>Changa   |
|------|-----------------------------|----------------------|-----------------|
| Year | Planning<br>Increase (> 5%) | Planning<br>Decrease | Change<br>Index |
| 1993 | 14                          | 40                   | -26             |
| 1994 | 13                          | 39                   | -26             |
| 1995 | 8                           | 27                   | -19             |
| 1996 | 17                          | 23                   | -6              |
| 1997 | 15                          | 41                   | -26             |
| 1998 | 14                          | 28                   | -14             |
| 1999 | 14                          | 37                   | -23             |
| 2000 | 17                          | 26                   | <b>-</b> 9      |
| 2001 | 17                          | 38                   | -21             |
| 2002 | 12                          | 25                   | -13             |

Source: Industrial Research Institute

#### Federal and Industry Shares of US R&D Expenditures, 1953–2000



Source: National Science Board, Science and Engineering Indicators – 2002, Appendix Table 4-5

Federal R&D for Health and General Science, FY 1980-2002 (budget authority in millions of dollars)



Source: National Science Board, Science and Engineering Indicators – 2002

## Implications for Adequacy of R&D Investment:

- Inadequate amount
- Skewed **composition** of industrial R&D toward short-term investment objectives
- Geographic concentration
- Skewed distribution of federal R&D across emerging technologies

Message: the long run is here

- (1) Technical Complexity
- **(2)** *Time*
- (3) Capital Intensity
- (4) Economies of Scope
- (5) Spillovers
- (6) Technical Infrastructure

#### "Black Box" Model of a Technology-Based Industry



Source: G. Tassey, *The Economics of R&D Policy*, Quorum Books, 1997, p. 70

#### Transition Between Two Technology Life Cycles



Source: Gregory Tassey, The Economics of R&D Policy, Quorum Books, 1997, Chap. 7

#### Risk Reduction Over a Technology Life Cycle



Source: Gregory Tassey, *The Economics of R&D Policy*, Quorum Books, 1997, Chap. 7

#### **Economic Model of a Technology-Based Industry**



# **Interdependency of Public—Private Technology Assets: Biotechnology**

#### Science Base

- Genomics
- Immunology
- Microbiology/ virology
- Molecular and cellular biology
- Nanoscience
- Neuroscience
- Pharmacology
- Physiology
- Proteomics

#### Infratechnologies

- bioinformatics
- biospectroscopy
- combinatorial chemistry
- DNA chemistry, sequencing, and profiling
- Electrophoresis
- Fluorescence
- gene expression analysis
- magnetic resonance spectrometry
- mass spectrometry
- nucleic acid diagnostics
- protein structure modeling/analysis techniques

# Generic Technologies Product Product

- antiangiogenesis
- antisense
- apoptosis
- bioelectronics
- biomaterials
- biosensors
- functional genomics
- gene delivery systems
- gene testing
- gene therapy
- gene expression systems
- monoclonal antibodies
- pharmacogenomics
- stem-cell
- tissue engineering

#### <u>Process</u>

- cell encapsulation
- cell culture
- DNA arrays/chips
- fermentation
- gene transfer
- immunoassays
- implantable delivery systems
- nucleic acid amplification
- recombinant DNA/genetic engineering
- separation technologies
- transgenic animals

#### Commercial Products

- coagulation inhibitors
- DNA probes
- inflammation inhibitors
- hormone restorations
- nanodevices
- neuroactive steroids
- neuro-transmitter inhibitors
- protease inhibitors
- vaccines



Relative Expenditures by Phase of R&D over Technology Life Cycle



Source: Gregory Tassey, The Economics of R&D Policy, Quorum Books, 1997, p. 74

# Critical Government Research Support Provided for Major Technology Drivers:

- Computers (Flamm)
- Communications Networks (NRC)
- Biotechnology
- Nanotechnology
- Message: Once identified, major emerging technologies must be disaggregated to identify public good leverage points

# What type of R&D?

# Costs of Inadequate Software Testing Infrastructure

| <b>Industry Coverage</b>                        | Annual<br>Cost | Potential Economic Benefits |
|-------------------------------------------------|----------------|-----------------------------|
| Transportation Equipment and Financial Services | \$5.85 B       | \$2.10 B                    |
| U.S. Economy                                    | \$59.5 B       | \$22.2 B                    |

Source: RTI International, *The Economic Impacts of Inadequate Infrastructure for Software Testing* (NIST Planning Report 02-3)

# **R&D Policy Options**

#### How much R&D?

- If all manufacturing industries invested at the same rate as the high-tech segment, this sector's R&D would increase from \$130B to roughly \$400B
- If the Federal Government spent as much on all areas of science combined as it does just on health research, its R&D budget would increase by roughly \$11B
- One recent economic study (Jones and Williams) estimated that national R&D should be increased by a factor of four

# **R&D Policy Options**

# If problem is

- Inadequate science base:
  - > fund basic research at adequate scope and depth
- Inadequate amount of R&D:
  - > provide tax incentives (e.g., R&E tax credit) to raise expected rates of return above corporate hurdle rates
- Distorted composition of R&D:
  - Co-fund generic technology research to create attractive corporate option pricing for portfolio of emerging technologies